skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muñoz-Maravilla, J David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tropical corals are undergoing population declines due to disturbances. The implications of these trends are modulated by the ability of corals to support population recovery through recruitment. Current research underscores the importance of physical features of benthic surfaces in promoting coral recruitment, which creates opportunities to enhance recruitment by engineering surfaces to replicate these features with the goal of enhancing coral settlement. This study examined the interaction between the settlement of coral larvae and three-dimensional (3D) surfaces and employed 3D printing to enhance recruitment. We tested the effects of the features of microhabitats on the settlement preference, gregariousness, and survival of the brooding coral Pocillopora acuta. Grooved microhabitats that are common in the shallow (<7 m depth) backreef of Moorea, French Polynesia, were printed onto tiles made of polylactic acid, and were favored for settlement by freshly released larvae fromP.acuta. The percent survivorship over 20 d of coral recruits that settled in grooved microhabitats was 16.4% vs none on open flat surfaces. These results underscore the importance of naturally forming benthic features in promoting coral recruitment, and they highlight the potential for duplication of these features through 3D printing to enhance coral recruitment and accelerate reef restoration following damage. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026